

 \odot

 \odot

Date	Planne	ed://_		Daily	Daily Tutorial Sheet - 6			Expected Duration : 90 Min		
Actual Date of Attempt ://				Level - 2			Exact Duration :			
76.	10 g o	f dolomite cont	tains						\odot	
	(A)	0.1 mole of	CaCO ₃		(B)	0.108 g atom	of C			
	(C)	6×10^{23} atom	ns of Ca		(D)	1 g equivalen	it of Ca			
77.	A can	A candle is burnt in a beaker until it extinguishes itself. A sample of gaseous mixture in the beak								
	contains 6.08×10^{20} molecules of $N_2, 0.76 \times 10^{20}$ molecules of O_2 , and 0.50×10^{20} molecules of CO_2 .									
	The total pressure is 734 mm of Hg. The partial pressure of ${\rm O}_2$ would be									
	(A)	760.0 mm of		(B)	76.0 mm of Hg					
	(C)	7.6 mm of H		(D)	0.76 mm of Hg					
78.	The pe	The per cent loss in weight after heating a pure sample of $KClO_3$ (molecular weight = 122.5) will be							\odot	
	(A)	12.25	(B) 2	4.50	(C)	39.18	(D)	49.0		
79.	1.0 g of a monobasic acid when completely acted upon Mg gave 1.301 g of anhydrous Mg salt. Equivale									
	Ü	t of acid is							lacksquare	
	(A)	35.54		6.54	(C)	17.77	(D)	18.27		
80.	0.1 g of metal combines with 46.6 mL of oxygen at STP. The equivalent weight of metal is								lacksquare	
	(A)	12	(B) 2		(C)	6	(D)	36		
81.	Density of water is 1.00 g/cm ³ and density of ethanol is 0.9 g/cm ³ . If these two liquids were mixed to									
	prepar (A)	re a dilute solu		00 g/om3	(B)	density of the solution < 1.00 g/cm ³			(\mathbf{P})	
	(A) (C)	•			(D)	density of the solution $< 1.00 \text{ g/cm}^3$ density of the solution $= 1 \text{ g/cm}^3$				
82.	Potassium selenate is isomorphous with potassium sulphate and contains 50.0% of Se. Find the atomic									
	weight of Se.								()	
	(A)	142	(B) 7	1	(C)	47.33	(D)	284	•	
83.	The e	quivalent weig	tht of an ele	ment is 13.	It forms	s an acidic ox	ide which	n with KOH forms	a salt	
	isomo	isomorphous with ${\rm K_2SO_4}$. The atomic weight of element is								
	(A)	13	(B) 2	6	(C)	52	(D)	78		

0.05 g of a piece of metal in dilute acid gave 24.62 mL of $\rm\,H_2$ at 27°C and 760 mm pressure. The

What volume of HCl solution of density $1.2~g/cm^3$ and containing 36.5~% by mass HCl, must be allowed

50

614.66 mL

(D)

(D)

37.5

None of these

(C)

(C)

84.

85.

(A)

(A)

Equivalent weight of metal is

 $333.33\;mL$

(B)

(B)

to react with zinc (Zn) in order to liberate 4.0 g of hydrogen?

12.5

500 mL